-
점 $A(x_1, y_1, z_1)$을 지나고, 벡터 $\vec u=(a,b, c)$에 평행한 직선
- $\vec p=\vec a+t\vec u$
- $\begin{cases}
x=x_1+at\\
y=y_1+bt\\
z=z_1+ct
\end{cases}$
- $\dfrac{x-x_1}{a}=\dfrac{y-y_1}{b}=\dfrac{z-z_1}{c}$
-
두 점 $A(x_1, y_1, z_1), \, B(x_2, y_2, z_2)$를 지나는 직선
- $\vec p = (1-t)\vec a + t \vec b$
- $\begin{cases}x=x_1+(x_2-x_1)t\\y=y_1+(y_2-y_1)t\\z=z_1+(z_2-z_1)t\end{cases}$
- $\dfrac{x-x_1}{x_2-x_1}=\dfrac{y-y_1}{y_2-y_1}=\dfrac{z-z_1}{z_2-z_1}$
-
두 직선의 방향벡터 $\vec {u_1}=(a_1,b_1,c_1),\vec{u_2}=(a_2,b_2,c_2)$
- $l_1 \parallel l_2 \Lrarr \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}$
- $l_1\perp l_2\Lrarr a_1a_2+b_1b_2+c_1c_2=0$
- 두 직선이 이루는 각 $\theta$ ⇒ $\cos\theta = \dfrac{| \vec{d_1}\cdot\vec{d_2}|}{ | \vec{d_1} | \cdot|\vec{d_2}| }=
\dfrac{|a_1a_2+b_1b_2+c_1c_2|}{\sqrt{({a_1}^2+{b_1}^2+{c_1}^2)({a_2}^2+{b_2}^2+{c_2}^2)}}$